参考文献

src/dict.c

  • 基于Redis 6.2版本
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
/* Hash Tables Implementation.
*
* This file implements in memory hash tables with insert/del/replace/find/
* get-random-element operations. Hash tables will auto resize if needed
* tables of power of two in size are used, collisions are handled by
* chaining. See the source code for more information... :)
*
* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include "fmacros.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>

#include "dict.h"
#include "zmalloc.h"
#include "redisassert.h"

/* Using dictEnableResize() / dictDisableResize() we make possible to disable
* resizing and rehashing of the hash table as needed. This is very important
* for Redis, as we use copy-on-write and don't want to move too much memory
* around when there is a child performing saving operations.
*
* 通过 dictEnableResize() 和 dictDisableResize() 两个函数,
* 程序可以手动地允许或阻止哈希表进行 rehash ,
* 这在 Redis 使用子进程进行保存操作时,可以有效地利用 copy-on-write 机制。
*
* Note that even when dict_can_resize is set to 0, not all resizes are
* prevented: a hash table is still allowed to grow if the ratio between
* the number of elements and the buckets > dict_force_resize_ratio.
*
* 需要注意的是,并非所有 rehash 都会被 dictDisableResize 阻止:
* 如果已使用节点的数量和字典大小之间的比率,
* 大于字典强制 rehash 比率 dict_force_resize_ratio ,
* 那么 rehash 仍然会(强制)进行。
* */
// 指示字典是否启用 rehash 的标识
static dictResizeEnable dict_can_resize = DICT_RESIZE_ENABLE;
// 强制 rehash 的比率
static unsigned int dict_force_resize_ratio = 5;

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);

/* -------------------------- hash functions -------------------------------- */

static uint8_t dict_hash_function_seed[16];

void dictSetHashFunctionSeed(uint8_t *seed) {
memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
}

uint8_t *dictGetHashFunctionSeed(void) {
return dict_hash_function_seed;
}

/* The default hashing function uses SipHash implementation
* in siphash.c. */

uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);

uint64_t dictGenHashFunction(const void *key, int len) {
return siphash(key,len,dict_hash_function_seed);
}

uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
return siphash_nocase(buf,len,dict_hash_function_seed);
}

/* ----------------------------- API implementation ------------------------- */

/* Reset a hash table already initialized with ht_init().
* NOTE: This function should only be called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
ht->table = NULL;
ht->size = 0;
ht->sizemask = 0;
ht->used = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type,
void *privDataPtr)
{
dict *d = zmalloc(sizeof(*d));

_dictInit(d,type,privDataPtr);
return d;
}

/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
void *privDataPtr)
{
// 初始化两个哈希表的各项属性值
// 但暂时还不分配内存给哈希表数组
_dictReset(&d->ht[0]);
_dictReset(&d->ht[1]);

// 设置类型特定函数
d->type = type;
// 设置私有数据
d->privdata = privDataPtr;
// 设置哈希表 rehash 状态
d->rehashidx = -1;
// 设置字典的安全迭代器数量
d->pauserehash = 0;
return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
/*
* 缩小给定字典
* 让它的已用节点数和字典大小之间的比率接近 1:1
*
* 返回 DICT_ERR 表示字典已经在 rehash ,或者 dict_can_resize 为假。
*
* 成功创建体积更小的 ht[1] ,可以开始 resize 时,返回 DICT_OK。
*
* T = O(N)
*/
int dictResize(dict *d)
{
unsigned long minimal;

// 不能在关闭 rehash 或者正在 rehash 的时候调用
if (dict_can_resize != DICT_RESIZE_ENABLE || dictIsRehashing(d)) return DICT_ERR;
// 计算让比率接近 1:1 所需要的最少节点数量
minimal = d->ht[0].used;
if (minimal < DICT_HT_INITIAL_SIZE)
minimal = DICT_HT_INITIAL_SIZE;
// 调整字典的大小
// T = O(N)
return dictExpand(d, minimal);
}

/* Expand or create the hash table,
* when malloc_failed is non-NULL, it'll avoid panic if malloc fails (in which case it'll be set to 1).
* Returns DICT_OK if expand was performed, and DICT_ERR if skipped. */
/*
* 创建一个新的哈希表,并根据字典的情况,选择以下其中一个动作来进行:
*
* 1) 如果字典的 0 号哈希表为空,那么将新哈希表设置为 0 号哈希表
* 2) 如果字典的 0 号哈希表非空,那么将新哈希表设置为 1 号哈希表,
* 并打开字典的 rehash 标识,使得程序可以开始对字典进行 rehash
*
* size 参数不够大,或者 rehash 已经在进行时,返回 DICT_ERR 。
*
* 成功创建 0 号哈希表,或者 1 号哈希表时,返回 DICT_OK 。
*
* T = O(N)
*/
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{
if (malloc_failed) *malloc_failed = 0;

/* the size is invalid if it is smaller than the number of
* elements already inside the hash table */
/* 如果正在rehash或者新哈希表的大小小于现已使用,则返回error */
if (dictIsRehashing(d) || d->ht[0].used > size)
return DICT_ERR;
// 新哈希表
dictht n; /* the new hash table */
// 计算扩展或缩放新哈希表的大小(调用下面函数_dictNextPower())
unsigned long realsize = _dictNextPower(size);

/* Detect overflows */
if (realsize < size || realsize * sizeof(dictEntry*) < realsize)
return DICT_ERR;

/* Rehashing to the same table size is not useful. */
/* 如果计算出哈希表size与现哈希表大小一样,也返回error */
if (realsize == d->ht[0].size) return DICT_ERR;

/* Allocate the new hash table and initialize all pointers to NULL */
/* 初始化新哈希表 */
n.size = realsize;
n.sizemask = realsize-1;
if (malloc_failed) {
// 为table指向dictEntry 分配内存
n.table = ztrycalloc(realsize*sizeof(dictEntry*));
*malloc_failed = n.table == NULL;
if (*malloc_failed)
return DICT_ERR;
} else
n.table = zcalloc(realsize*sizeof(dictEntry*));

n.used = 0;

/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
/* 如果ht[0] 为空,则初始化ht[0]为当前键值对的哈希表 */
if (d->ht[0].table == NULL) {
d->ht[0] = n;
return DICT_OK;
}

/* Prepare a second hash table for incremental rehashing */
/* 如果ht[0]不为空,则初始化ht[1]为当前键值对的哈希表,并开启渐进式rehash模式 */
d->ht[1] = n;
d->rehashidx = 0;
return DICT_OK;
}

/* return DICT_ERR if expand was not performed */
int dictExpand(dict *d, unsigned long size) {
return _dictExpand(d, size, NULL);
}

/* return DICT_ERR if expand failed due to memory allocation failure */
int dictTryExpand(dict *d, unsigned long size) {
int malloc_failed;
_dictExpand(d, size, &malloc_failed);
return malloc_failed? DICT_ERR : DICT_OK;
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
/*
* 执行 N 步渐进式 rehash 。
*
* 返回 1 表示仍有键需要从 0 号哈希表移动到 1 号哈希表,
* 返回 0 则表示所有键都已经迁移完毕。
*
* 注意,每步 rehash 都是以一个哈希表索引(桶)作为单位的,
* 一个桶里可能会有多个节点,
* 被 rehash 的桶里的所有节点都会被移动到新哈希表。
*
* T = O(N)
*/
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
unsigned long s0 = d->ht[0].size;
unsigned long s1 = d->ht[1].size;
if (dict_can_resize == DICT_RESIZE_FORBID || !dictIsRehashing(d)) return 0;
if (dict_can_resize == DICT_RESIZE_AVOID &&
((s1 > s0 && s1 / s0 < dict_force_resize_ratio) ||
(s1 < s0 && s0 / s1 < dict_force_resize_ratio)))
{
return 0;
}
// 主循环,根据要拷贝的bucket数量n,循环n次后停止或ht[0]中的数据迁移完停止
while(n-- && d->ht[0].used != 0) {
dictEntry *de, *nextde;

/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
// rehashidx 变量表示的是当前 rehash 在对哪个 bucket 做数据迁移。
// 比如,当 rehashidx 等于 0 时,表示对 ht[0]中的第一个 bucket 进行数据迁移;
// 当 rehashidx 等于 1 时,表示对 ht[0]中的第二个 bucket 进行数据迁移,以此类推。
assert(d->ht[0].size > (unsigned long)d->rehashidx);
while(d->ht[0].table[d->rehashidx] == NULL) {
// 判断 rehashidx 指向的 bucket 是否为空,如果为空,那就将 rehashidx 的值加 1,检查下一个 bucket
d->rehashidx++;
// 渐进式 rehash 在执行时设置了一个变量 empty_visits,用来表示已经检查过的空 bucket,当检查了一定数量的空 bucket 后,这一轮的 rehash 就停止执行,转而继续处理外来请求,避免了对 Redis 性能的影响。
if (--empty_visits == 0) return 1;
}
// 获得哈希表中哈希项
de = d->ht[0].table[d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
// 如果rehashidx指向的bucket不为空
while(de) {
uint64_t h;
// 获得同一个bucket中下一个哈希项
nextde = de->next;
// 根据扩容后的哈希表ht[1]大小,计算当前哈希项在扩容后哈希表中的bucket位置
/* Get the index in the new hash table */
h = dictHashKey(d, de->key) & d->ht[1].sizemask;
// 将当前哈希项添加到扩容后的哈希表ht[1]中
de->next = d->ht[1].table[h];
d->ht[1].table[h] = de;
// 减少当前哈希表的哈希项个数
d->ht[0].used--;
// 增加扩容后哈希表的哈希项个数
d->ht[1].used++;
// 指向下一个哈希项
de = nextde;
}
// 如果当前bucket中已经没有哈希项了,将该bucket置为NULL
d->ht[0].table[d->rehashidx] = NULL;
// 将rehash加1,下一次将迁移下一个bucket中的元素
d->rehashidx++;
}

/* Check if we already rehashed the whole table... */
// 判断ht[0]的数据是否迁移完成
if (d->ht[0].used == 0) {
// ht[0]迁移完后,释放ht[0]内存空间
zfree(d->ht[0].table);
// 让ht[0]指向ht[1],以便接受正常的请求
d->ht[0] = d->ht[1];
// 重置ht[1]的大小为0
_dictReset(&d->ht[1]);
//设置全局哈希表的rehashidx标识为-1,表示rehash结束
d->rehashidx = -1;
// 返回0,表示ht[0]中所有元素都迁移完
return 0;
}

/* More to rehash... */
// 返回1,表示ht[0]中仍然有元素没有迁移完
return 1;
}
/*
* 返回以毫秒为单位的 UNIX 时间戳
*
* T = O(1)
*/
long long timeInMilliseconds(void) {
struct timeval tv;

gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash in ms+"delta" milliseconds. The value of "delta" is larger
* than 0, and is smaller than 1 in most cases. The exact upper bound
* depends on the running time of dictRehash(d,100).*/
int dictRehashMilliseconds(dict *d, int ms) {
if (d->pauserehash > 0) return 0;

// 记录开始时间
long long start = timeInMilliseconds();
int rehashes = 0;

while(dictRehash(d,100)) {
rehashes += 100;
// 如果时间已过,跳出
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}

/* This function performs just a step of rehashing, and only if hashing has
* not been paused for our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some element can be missed or duplicated.
* 在字典不存在安全迭代器的情况下,对字典进行单步 rehash 。
*
* 字典有安全迭代器的情况下不能进行 rehash ,
* 因为两种不同的迭代和修改操作可能会弄乱字典。
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used.
*
* 这个函数被多个通用的查找、更新操作调用,
* 它可以让字典在被使用的同时进行 rehash 。
*
* T = O(1)
*/
static void _dictRehashStep(dict *d) {
// 给dictRehash传入的循环次数参数为1,表明每迁移完一个bucket ,就执行正常操作
if (d->pauserehash == 0) dictRehash(d,1);
}

/* Add an element to the target hash table */
/*
* 尝试将给定键值对添加到字典中
*
* 只有给定键 key 不存在于字典时,添加操作才会成功
*
* 添加成功返回 DICT_OK ,失败返回 DICT_ERR
*
* 最坏 T = O(N) ,平摊 O(1)
*/
int dictAdd(dict *d, void *key, void *val)
{
// 尝试添加键到字典,并返回包含了这个键的新哈希节点
// T = O(N)
dictEntry *entry = dictAddRaw(d,key,NULL);

// 键已存在,添加失败
if (!entry) return DICT_ERR;
// 键不存在,设置节点的值
// T = O(1)
dictSetVal(d, entry, val);
// 添加成功
return DICT_OK;
}

/* Low level add or find:
* This function adds the entry but instead of setting a value returns the
* dictEntry structure to the user, that will make sure to fill the value
* field as they wish.
*
* This function is also directly exposed to the user API to be called
* mainly in order to store non-pointers inside the hash value, example:
*
* entry = dictAddRaw(dict,mykey,NULL);
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
*
* Return values:
*
* If key already exists NULL is returned, and "*existing" is populated
* with the existing entry if existing is not NULL.
*
* If key was added, the hash entry is returned to be manipulated by the caller.
*/
/*
* 尝试将键插入到字典中
*
* 如果键已经在字典存在,那么返回 NULL
*
* 如果键不存在,那么程序创建新的哈希节点,
* 将节点和键关联,并插入到字典,然后返回节点本身。
*
* T = O(N)
*/
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
long index;
dictEntry *entry;
dictht *ht;

// 如果哈希表在rehash,则执行单步rehash
if (dictIsRehashing(d)) _dictRehashStep(d);

/* Get the index of the new element, or -1 if
* the element already exists. */
// 调用_dictKeyIndex() 检查键是否存在,如果值为 -1 ,那么表示键已经存在,如果存在则返回NULL
if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
return NULL;

/* Allocate the memory and store the new entry.
* Insert the element in top, with the assumption that in a database
* system it is more likely that recently added entries are accessed
* more frequently. */
// 如果字典正在 rehash ,那么将新键添加到 1 号哈希表
// 否则,将新键添加到 0 号哈希表
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
// 为新增的节点分配内存
entry = zmalloc(sizeof(*entry));
// 将节点插入链表表头
entry->next = ht->table[index];
// 更新节点和桶信息
ht->table[index] = entry;
// 更新ht
ht->used++;

// 设置新节点的键
/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
}

/* Add or Overwrite:
* Add an element, discarding the old value if the key already exists.
* Return 1 if the key was added from scratch, 0 if there was already an
* element with such key and dictReplace() just performed a value update
* operation. */
/*
*
* 将给定的键值对添加到字典中,如果键已经存在,那么删除旧有的键值对。
*
* 如果键值对为全新添加,那么返回 1 。
* 如果键值对是通过对原有的键值对更新得来的,那么返回 0 。
*
* T = O(N)
*/
int dictReplace(dict *d, void *key, void *val)
{
dictEntry *entry, *existing, auxentry;

/* Try to add the element. If the key
* does not exists dictAdd will succeed. */
// 尝试直接将键值对添加到字典
// 如果键 key 不存在的话,添加会成功
// T = O(N)
entry = dictAddRaw(d,key,&existing);
if (entry) {
// key不存在,直接设置对应的值
dictSetVal(d, entry, val);
return 1;
}

/* Set the new value and free the old one. Note that it is important
* to do that in this order, as the value may just be exactly the same
* as the previous one. In this context, think to reference counting,
* you want to increment (set), and then decrement (free), and not the
* reverse. */
// 先保存原有的值的指针
auxentry = *existing;
// 然后设置新的值
// T = O(1)
dictSetVal(d, existing, val);
// 然后释放旧值
// T = O(1)
dictFreeVal(d, &auxentry);
return 0;
}

/* Add or Find:
* dictAddOrFind() is simply a version of dictAddRaw() that always
* returns the hash entry of the specified key, even if the key already
* exists and can't be added (in that case the entry of the already
* existing key is returned.)
*
* See dictAddRaw() for more information. */
dictEntry *dictAddOrFind(dict *d, void *key) {
dictEntry *entry, *existing;
entry = dictAddRaw(d,key,&existing);
return entry ? entry : existing;
}

/* Search and remove an element. This is an helper function for
* dictDelete() and dictUnlink(), please check the top comment
* of those functions. */
/*
* 查找并删除包含给定键的节点
*
* 参数 nofree 决定是否调用键和值的释放函数
* 0 表示调用,1 表示不调用
*
* 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
*
* T = O(1)
*/
static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
uint64_t h, idx;
dictEntry *he, *prevHe;
int table;

// 字典(的哈希表)为空
if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;

if (dictIsRehashing(d)) _dictRehashStep(d);
// 计算key的哈希值
h = dictHashKey(d, key);

for (table = 0; table <= 1; table++) {
// 根据key的哈希值获取它所在的哈希桶编号
idx = h & d->ht[table].sizemask;
// 获取key所在哈希桶的第一个哈希项
he = d->ht[table].table[idx];
prevHe = NULL;
while(he) {
// 在哈希桶中逐一查找被删除的key是否存在
if (key==he->key || dictCompareKeys(d, key, he->key)) {
/* Unlink the element from the list */
// 如果找到被删除key了,那么将它从哈希桶的链表中去除
if (prevHe)
prevHe->next = he->next;
else
d->ht[table].table[idx] = he->next;
// 如果要同步删除,那么就释放key和value的内存空间
if (!nofree) {
dictFreeKey(d, he);
dictFreeVal(d, he);
zfree(he);
}
// 更新已使用节点数量
d->ht[table].used--;
return he;
}
prevHe = he;
// 当前key不是要查找的key,再找下一个
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return NULL; /* not found */
}

/* Remove an element, returning DICT_OK on success or DICT_ERR if the
* element was not found. */
/*
* 从字典中删除包含给定键的节点
*
* 并且调用键值的释放函数来删除键值
*
* 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
* T = O(1)
*/
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
}

/* Remove an element from the table, but without actually releasing
* the key, value and dictionary entry. The dictionary entry is returned
* if the element was found (and unlinked from the table), and the user
* should later call `dictFreeUnlinkedEntry()` with it in order to release it.
* Otherwise if the key is not found, NULL is returned.
*
* This function is useful when we want to remove something from the hash
* table but want to use its value before actually deleting the entry.
* Without this function the pattern would require two lookups:
*
* entry = dictFind(...);
* // Do something with entry
* dictDelete(dictionary,entry);
*
* Thanks to this function it is possible to avoid this, and use
* instead:
*
* entry = dictUnlink(dictionary,entry);
* // Do something with entry
* dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
*/
/*
* 从字典中删除包含给定键的节点
*
* 但不调用键值的释放函数来删除键值
*
* 找到并成功删除返回 DICT_OK ,没找到则返回 DICT_ERR
* T = O(1)
*/
dictEntry *dictUnlink(dict *ht, const void *key) {
return dictGenericDelete(ht,key,1);
}

/* You need to call this function to really free the entry after a call
* to dictUnlink(). It's safe to call this function with 'he' = NULL. */
void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
if (he == NULL) return;
dictFreeKey(d, he);
dictFreeVal(d, he);
zfree(he);
}

/* Destroy an entire dictionary */
/*
* 删除哈希表上的所有节点,并重置哈希表的各项属性
*
* T = O(N)
*/
int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
unsigned long i;

/* Free all the elements */
// 遍历整个哈希表
// T = O(N)
for (i = 0; i < ht->size && ht->used > 0; i++) {
dictEntry *he, *nextHe;

if (callback && (i & 65535) == 0) callback(d->privdata);
// 跳过空索引
if ((he = ht->table[i]) == NULL) continue;
// 遍历整个链表
// T = O(1)
while(he) {
nextHe = he->next;
// 删除键
dictFreeKey(d, he);
// 删除值
dictFreeVal(d, he);
// 释放节点
zfree(he);
// 更新已使用节点计数
ht->used--;
// 处理下个节点
he = nextHe;
}
}
/* Free the table and the allocated cache structure */
// 释放哈希表结构
zfree(ht->table);
/* Re-initialize the table */
// 重置哈希表属性
_dictReset(ht);
return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
/*
* 删除并释放整个字典
*
* T = O(N)
*/
void dictRelease(dict *d)
{
// 删除并清空两个哈希表
_dictClear(d,&d->ht[0],NULL);
_dictClear(d,&d->ht[1],NULL);
// 释放节点结构
zfree(d);
}
/*
* 返回字典中包含键 key 的节点
*
* 找到返回节点,找不到返回 NULL
*
* T = O(1)
*/
dictEntry *dictFind(dict *d, const void *key)
{
dictEntry *he;
uint64_t h, idx, table;

// 字典(的哈希表)为空
if (dictSize(d) == 0) return NULL; /* dict is empty */
// 如果条件允许的话,进行单步 rehash
if (dictIsRehashing(d)) _dictRehashStep(d);
// 计算键的哈希值
h = dictHashKey(d, key);
// 在字典的哈希表中查找这个键
// T = O(1)
for (table = 0; table <= 1; table++) {
// 计算索引值
idx = h & d->ht[table].sizemask;
// 遍历给定索引上的链表的所有节点,查找 key
he = d->ht[table].table[idx];
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key))
return he;
he = he->next;
}
// 如果程序遍历完 0 号哈希表,仍然没找到指定的键的节点
// 那么程序会检查字典是否在进行 rehash ,
// 然后才决定是直接返回 NULL ,还是继续查找 1 号哈希表
if (!dictIsRehashing(d)) return NULL;
}
// 进行到这里时,说明两个哈希表都没找到
return NULL;
}
/*
* 获取包含给定键的节点的值
*
* 如果节点不为空,返回节点的值
* 否则返回 NULL
*
* T = O(1)
*/
void *dictFetchValue(dict *d, const void *key) {
dictEntry *he;

he = dictFind(d,key);
return he ? dictGetVal(he) : NULL;
}

/* A fingerprint is a 64 bit number that represents the state of the dictionary
* at a given time, it's just a few dict properties xored together.
* When an unsafe iterator is initialized, we get the dict fingerprint, and check
* the fingerprint again when the iterator is released.
* If the two fingerprints are different it means that the user of the iterator
* performed forbidden operations against the dictionary while iterating. */
unsigned long long dictFingerprint(dict *d) {
unsigned long long integers[6], hash = 0;
int j;

integers[0] = (long) d->ht[0].table;
integers[1] = d->ht[0].size;
integers[2] = d->ht[0].used;
integers[3] = (long) d->ht[1].table;
integers[4] = d->ht[1].size;
integers[5] = d->ht[1].used;

/* We hash N integers by summing every successive integer with the integer
* hashing of the previous sum. Basically:
*
* Result = hash(hash(hash(int1)+int2)+int3) ...
*
* This way the same set of integers in a different order will (likely) hash
* to a different number. */
for (j = 0; j < 6; j++) {
hash += integers[j];
/* For the hashing step we use Tomas Wang's 64 bit integer hash. */
hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
hash = hash ^ (hash >> 24);
hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
hash = hash ^ (hash >> 14);
hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
hash = hash ^ (hash >> 28);
hash = hash + (hash << 31);
}
return hash;
}
/*
* 创建并返回给定字典的不安全迭代器
*
* T = O(1)
*/
dictIterator *dictGetIterator(dict *d)
{
dictIterator *iter = zmalloc(sizeof(*iter));

iter->d = d;
iter->table = 0;
iter->index = -1;
iter->safe = 0;
iter->entry = NULL;
iter->nextEntry = NULL;
return iter;
}
/*
* 创建并返回给定节点的安全迭代器
*
* T = O(1)
*/
dictIterator *dictGetSafeIterator(dict *d) {
dictIterator *i = dictGetIterator(d);

// 设置安全迭代器标识
i->safe = 1;
return i;
}
/*
* 返回迭代器指向的当前节点
*
* 字典迭代完毕时,返回 NULL
*
* T = O(1)
*/
dictEntry *dictNext(dictIterator *iter)
{
while (1) {
// 进入这个循环有两种可能:
// 1) 这是迭代器第一次运行
// 2) 当前索引链表中的节点已经迭代完(NULL 为链表的表尾)
if (iter->entry == NULL) {
// 指向被迭代的哈希表
dictht *ht = &iter->d->ht[iter->table];
// 初次迭代时执行
if (iter->index == -1 && iter->table == 0) {
// 如果是安全迭代器,那么更新安全迭代器计数器
if (iter->safe)
dictPauseRehashing(iter->d);
else
// 如果是不安全迭代器,那么计算指纹
iter->fingerprint = dictFingerprint(iter->d);
}
// 更新索引
iter->index++;
// 如果迭代器的当前索引大于当前被迭代的哈希表的大小
// 那么说明这个哈希表已经迭代完毕
if (iter->index >= (long) ht->size) {
// 如果正在 rehash 的话,那么说明 1 号哈希表也正在使用中
// 那么继续对 1 号哈希表进行迭代
if (dictIsRehashing(iter->d) && iter->table == 0) {
iter->table++;
iter->index = 0;
ht = &iter->d->ht[1];
} else {
// 如果没有 rehash ,那么说明迭代已经完成
break;
}
}
// 如果进行到这里,说明这个哈希表并未迭代完
// 更新节点指针,指向下个索引链表的表头节点
iter->entry = ht->table[iter->index];
} else {
// 执行到这里,说明程序正在迭代某个链表
// 将节点指针指向链表的下个节点
iter->entry = iter->nextEntry;
}
// 如果当前节点不为空,那么也记录下该节点的下个节点
// 因为安全迭代器有可能会将迭代器返回的当前节点删除
if (iter->entry) {
/* We need to save the 'next' here, the iterator user
* may delete the entry we are returning. */
iter->nextEntry = iter->entry->next;
return iter->entry;
}
}
// 迭代完毕
return NULL;
}
/*
* 释放给定字典迭代器
*
* T = O(1)
*/
void dictReleaseIterator(dictIterator *iter)
{
if (!(iter->index == -1 && iter->table == 0)) {
// 释放安全迭代器时,安全迭代器计数器减一
if (iter->safe)
dictResumeRehashing(iter->d);
else
// 释放不安全迭代器时,验证指纹是否有变化
assert(iter->fingerprint == dictFingerprint(iter->d));
}
zfree(iter);
}

/* Return a random entry from the hash table. Useful to
* implement randomized algorithms */
/*
* 随机返回字典中任意一个节点。
*
* 可用于实现随机化算法。
*
* 如果字典为空,返回 NULL 。
*
* T = O(N)
*/
dictEntry *dictGetRandomKey(dict *d)
{
dictEntry *he, *orighe;
unsigned long h;
int listlen, listele;

// 字典为空
if (dictSize(d) == 0) return NULL;
// 进行单步 rehash
if (dictIsRehashing(d)) _dictRehashStep(d);

// 如果正在 rehash ,那么将 1 号哈希表也作为随机查找的目标
if (dictIsRehashing(d)) {
do {
/* We are sure there are no elements in indexes from 0
* to rehashidx-1 */
h = d->rehashidx + (randomULong() % (dictSlots(d) - d->rehashidx));
he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
d->ht[0].table[h];
} while(he == NULL);
} else {
// 否则,只从 0 号哈希表中查找节点
do {
h = randomULong() & d->ht[0].sizemask;
he = d->ht[0].table[h];
} while(he == NULL);
}

/* Now we found a non empty bucket, but it is a linked
* list and we need to get a random element from the list.
* The only sane way to do so is counting the elements and
* select a random index. */
// 目前 he 已经指向一个非空的节点链表
// 程序将从这个链表随机返回一个节点
listlen = 0;
orighe = he;
// 计算节点数量, T = O(1)
while(he) {
he = he->next;
listlen++;
}
// 取模,得出随机节点的索引
listele = random() % listlen;
he = orighe;
// 按索引查找节点
// T = O(1)
while(listele--) he = he->next;
// 返回随机节点
return he;
}

/* This function samples the dictionary to return a few keys from random
* locations.
*
* It does not guarantee to return all the keys specified in 'count', nor
* it does guarantee to return non-duplicated elements, however it will make
* some effort to do both things.
*
* Returned pointers to hash table entries are stored into 'des' that
* points to an array of dictEntry pointers. The array must have room for
* at least 'count' elements, that is the argument we pass to the function
* to tell how many random elements we need.
*
* The function returns the number of items stored into 'des', that may
* be less than 'count' if the hash table has less than 'count' elements
* inside, or if not enough elements were found in a reasonable amount of
* steps.
*
* Note that this function is not suitable when you need a good distribution
* of the returned items, but only when you need to "sample" a given number
* of continuous elements to run some kind of algorithm or to produce
* statistics. However the function is much faster than dictGetRandomKey()
* at producing N elements. */
unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
unsigned long j; /* internal hash table id, 0 or 1. */
unsigned long tables; /* 1 or 2 tables? */
unsigned long stored = 0, maxsizemask;
unsigned long maxsteps;

if (dictSize(d) < count) count = dictSize(d);
maxsteps = count*10;

/* Try to do a rehashing work proportional to 'count'. */
for (j = 0; j < count; j++) {
if (dictIsRehashing(d))
_dictRehashStep(d);
else
break;
}

tables = dictIsRehashing(d) ? 2 : 1;
maxsizemask = d->ht[0].sizemask;
if (tables > 1 && maxsizemask < d->ht[1].sizemask)
maxsizemask = d->ht[1].sizemask;

/* Pick a random point inside the larger table. */
unsigned long i = randomULong() & maxsizemask;
unsigned long emptylen = 0; /* Continuous empty entries so far. */
while(stored < count && maxsteps--) {
for (j = 0; j < tables; j++) {
/* Invariant of the dict.c rehashing: up to the indexes already
* visited in ht[0] during the rehashing, there are no populated
* buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
/* Moreover, if we are currently out of range in the second
* table, there will be no elements in both tables up to
* the current rehashing index, so we jump if possible.
* (this happens when going from big to small table). */
if (i >= d->ht[1].size)
i = d->rehashidx;
else
continue;
}
if (i >= d->ht[j].size) continue; /* Out of range for this table. */
dictEntry *he = d->ht[j].table[i];

/* Count contiguous empty buckets, and jump to other
* locations if they reach 'count' (with a minimum of 5). */
if (he == NULL) {
emptylen++;
if (emptylen >= 5 && emptylen > count) {
i = randomULong() & maxsizemask;
emptylen = 0;
}
} else {
emptylen = 0;
while (he) {
/* Collect all the elements of the buckets found non
* empty while iterating. */
*des = he;
des++;
he = he->next;
stored++;
if (stored == count) return stored;
}
}
}
i = (i+1) & maxsizemask;
}
return stored;
}

/* This is like dictGetRandomKey() from the POV of the API, but will do more
* work to ensure a better distribution of the returned element.
*
* This function improves the distribution because the dictGetRandomKey()
* problem is that it selects a random bucket, then it selects a random
* element from the chain in the bucket. However elements being in different
* chain lengths will have different probabilities of being reported. With
* this function instead what we do is to consider a "linear" range of the table
* that may be constituted of N buckets with chains of different lengths
* appearing one after the other. Then we report a random element in the range.
* In this way we smooth away the problem of different chain lengths. */
#define GETFAIR_NUM_ENTRIES 15
dictEntry *dictGetFairRandomKey(dict *d) {
dictEntry *entries[GETFAIR_NUM_ENTRIES];
unsigned int count = dictGetSomeKeys(d,entries,GETFAIR_NUM_ENTRIES);
/* Note that dictGetSomeKeys() may return zero elements in an unlucky
* run() even if there are actually elements inside the hash table. So
* when we get zero, we call the true dictGetRandomKey() that will always
* yield the element if the hash table has at least one. */
if (count == 0) return dictGetRandomKey(d);
unsigned int idx = rand() % count;
return entries[idx];
}

/* Function to reverse bits. Algorithm from:
* http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
static unsigned long rev(unsigned long v) {
unsigned long s = CHAR_BIT * sizeof(v); // bit size; must be power of 2
unsigned long mask = ~0UL;
while ((s >>= 1) > 0) {
mask ^= (mask << s);
v = ((v >> s) & mask) | ((v << s) & ~mask);
}
return v;
}

/* dictScan() is used to iterate over the elements of a dictionary.
*
* dictScan() 函数用于迭代给定字典中的元素。
*
* Iterating works the following way:
*
* 1) Initially you call the function using a cursor (v) value of 0.
* 2) The function performs one step of the iteration, and returns the
* new cursor value you must use in the next call.
* 3) When the returned cursor is 0, the iteration is complete.
*
* 迭代按以下方式执行:
* 1) 一开始,你使用 0 作为游标来调用函数。
* 2) 函数执行一步迭代操作,并返回一个下次迭代时使用的新游标。
* 3) 当函数返回的游标为 0 时,迭代完成。
*
* The function guarantees all elements present in the
* dictionary get returned between the start and end of the iteration.
* However it is possible some elements get returned multiple times.
*
* 函数保证,在迭代从开始到结束期间,一直存在于字典的元素肯定会被迭代到,
* 但一个元素可能会被返回多次。
*
* For every element returned, the callback argument 'fn' is
* called with 'privdata' as first argument and the dictionary entry
* 'de' as second argument.
*
* 每当一个元素被返回时,回调函数 fn 就会被执行,
* fn 函数的第一个参数是 privdata ,而第二个参数则是字典节点 de 。
*
* HOW IT WORKS.
*
* The iteration algorithm was designed by Pieter Noordhuis.
* The main idea is to increment a cursor starting from the higher order
* bits. That is, instead of incrementing the cursor normally, the bits
* of the cursor are reversed, then the cursor is incremented, and finally
* the bits are reversed again.
*
* 迭代所使用的算法是由 Pieter Noordhuis 设计的,
* 算法的主要思路是在二进制高位上对游标进行加法计算
* 也即是说,不是按正常的办法来对游标进行加法计算,
* 而是首先将游标的二进制位翻转(reverse)过来,
* 然后对翻转后的值进行加法计算,
* 最后再次对加法计算之后的结果进行翻转。
*
* This strategy is needed because the hash table may be resized between
* iteration calls.
*
* 这一策略是必要的,因为在一次完整的迭代过程中,
* 哈希表的大小有可能在两次迭代之间发生改变。
*
* dict.c hash tables are always power of two in size, and they
* use chaining, so the position of an element in a given table is given
* by computing the bitwise AND between Hash(key) and SIZE-1
* (where SIZE-1 is always the mask that is equivalent to taking the rest
* of the division between the Hash of the key and SIZE).
*
* 哈希表的大小总是 2 的某个次方,并且哈希表使用链表来解决冲突,
* 因此一个给定元素在一个给定表的位置总可以通过 Hash(key) & SIZE-1
* 公式来计算得出,
* 其中 SIZE-1 是哈希表的最大索引值,
* 这个最大索引值就是哈希表的 mask (掩码)。
*
*
* For example if the current hash table size is 16, the mask is
* (in binary) 1111. The position of a key in the hash table will always be
* the last four bits of the hash output, and so forth.
* 举个例子,如果当前哈希表的大小为 16 ,
* 那么它的掩码就是二进制值 1111 ,
* 这个哈希表的所有位置都可以使用哈希值的最后四个二进制位来记录。
*
* WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
* 如果哈希表的大小改变了怎么办?
*
* If the hash table grows, elements can go anywhere in one multiple of
* the old bucket: for example let's say we already iterated with
* a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
* 当对哈希表进行扩展时,元素可能会从一个槽移动到另一个槽,
* 举个例子,假设我们刚好迭代至 4 位游标 1100 ,
* 而哈希表的 mask 为 1111 (哈希表的大小为 16 )。
*
* If the hash table will be resized to 64 elements, then the new mask will
* be 111111. The new buckets you obtain by substituting in ??1100
* with either 0 or 1 can be targeted only by keys we already visited
* when scanning the bucket 1100 in the smaller hash table.
* 如果这时哈希表将大小改为 64 ,那么哈希表的 mask 将变为 111111 ,
*
* By iterating the higher bits first, because of the inverted counter, the
* cursor does not need to restart if the table size gets bigger. It will
* continue iterating using cursors without '1100' at the end, and also
* without any other combination of the final 4 bits already explored.
*
* 首先迭代高位,因为反向计数器,游标不需要重新启动,如果表的大小变大,并且将只是继续迭代没有'1100'结尾的游标,
* 也没有任何其他最后4位的组合已经探索过了。
*
* Similarly when the table size shrinks over time, for example going from
* 16 to 8, if a combination of the lower three bits (the mask for size 8
* is 111) were already completely explored, it would not be visited again
* because we are sure we tried, for example, both 0111 and 1111 (all the
* variations of the higher bit) so we don't need to test it again.
* 类似地,当表大小随时间缩小时,例如从16到8,如果是低三位的组合(掩码大小为8)是不是已经被完全探索过了,它不会再被参观了
* 我们确信,例如,我们尝试了0111和1111(所有的更高位的变化),所以我们不需要再次测试它。
*
* WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
*
* Yes, this is true, but we always iterate the smaller table first, then
* we test all the expansions of the current cursor into the larger
* table. For example if the current cursor is 101 and we also have a
* larger table of size 16, we also test (0)101 and (1)101 inside the larger
* table. This reduces the problem back to having only one table, where
* the larger one, if it exists, is just an expansion of the smaller one.
*
* LIMITATIONS
*
* This iterator is completely stateless, and this is a huge advantage,
* including no additional memory used.
* 这个迭代器是完全无状态的,这是一个巨大的优势,
* 因为迭代可以在不使用任何额外内存的情况下进行。
*
* The disadvantages resulting from this design are:
*
* 1) It is possible we return elements more than once. However this is usually
* easy to deal with in the application level.
* 2) The iterator must return multiple elements per call, as it needs to always
* return all the keys chained in a given bucket, and all the expansions, so
* we are sure we don't miss keys moving during rehashing.
* 3) The reverse cursor is somewhat hard to understand at first, but this
* comment is supposed to help.
*
* 这个设计的缺陷在于:
*
* 1) 函数可能会返回重复的元素,不过这个问题可以很容易在应用层解决。
* 2) 为了不错过任何元素,迭代器需要返回给定桶上的所有键,以及因为扩展哈希表而产生出来的新表,
* 所以迭代器必须在一次迭代中返回多个元素。
* 3) 对游标进行翻转(reverse)的原因初看上去比较难以理解,
* 不过阅读这份注释应该会有所帮助。
*/
unsigned long dictScan(dict *d,
unsigned long v,
dictScanFunction *fn,
dictScanBucketFunction* bucketfn,
void *privdata)
{
dictht *t0, *t1;
const dictEntry *de, *next;
unsigned long m0, m1;

// 跳过空字典
if (dictSize(d) == 0) return 0;

/* This is needed in case the scan callback tries to do dictFind or alike. */
dictPauseRehashing(d);

// 迭代只有一个哈希表的字典
if (!dictIsRehashing(d)) {
// 指向哈希表
t0 = &(d->ht[0]);
// 记录 mask
m0 = t0->sizemask;

/* Emit entries at cursor */
if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
// 指向哈希桶
de = t0->table[v & m0];
// 遍历桶中的所有节点
while (de) {
next = de->next;
fn(privdata, de);
de = next;
}

/* Set unmasked bits so incrementing the reversed cursor
* operates on the masked bits */
v |= ~m0;

/* Increment the reverse cursor */
v = rev(v);
v++;
v = rev(v);

} else {
// 迭代有两个哈希表的字典
// 指向两个哈希表
t0 = &d->ht[0];
t1 = &d->ht[1];

/* Make sure t0 is the smaller and t1 is the bigger table */
// 确保 t0 比 t1 要小
if (t0->size > t1->size) {
t0 = &d->ht[1];
t1 = &d->ht[0];
}

// 记录掩码
m0 = t0->sizemask;
m1 = t1->sizemask;

/* Emit entries at cursor */
if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
// 指向桶,并迭代桶中的所有节点
de = t0->table[v & m0];
while (de) {
next = de->next;
fn(privdata, de);
de = next;
}

/* Iterate over indices in larger table that are the expansion
* of the index pointed to by the cursor in the smaller table */
do {
/* Emit entries at cursor */
if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
// 指向桶,并迭代桶中的所有节点
de = t1->table[v & m1];
while (de) {
next = de->next;
fn(privdata, de);
de = next;
}

/* Increment the reverse cursor not covered by the smaller mask.*/
v |= ~m1;
v = rev(v);
v++;
v = rev(v);

/* Continue while bits covered by mask difference is non-zero */
} while (v & (m0 ^ m1));
}

dictResumeRehashing(d);

return v;
}

/* ------------------------- private functions ------------------------------ */

/* Because we may need to allocate huge memory chunk at once when dict
* expands, we will check this allocation is allowed or not if the dict
* type has expandAllowed member function. */
/*
* 根据需要,初始化字典(的哈希表),或者对字典(的现有哈希表)进行扩展
*
* T = O(N)
*/
static int dictTypeExpandAllowed(dict *d) {
if (d->type->expandAllowed == NULL) return 1;
return d->type->expandAllowed(
_dictNextPower(d->ht[0].used + 1) * sizeof(dictEntry*),
(double)d->ht[0].used / d->ht[0].size);
}

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
/* Incremental rehashing already in progress. Return. */
// 渐进式 rehash 已经在进行了,直接返回
if (dictIsRehashing(d)) return DICT_OK;

/* If the hash table is empty expand it to the initial size. */
// 条件一; 如果Hash表为空,将Hash表扩为初始大小
if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

/* If we reached the 1:1 ratio, and we are allowed to resize the hash
* table (global setting) or we should avoid it but the ratio between
* elements/buckets is over the "safe" threshold, we resize doubling
* the number of buckets. */
if (!dictTypeExpandAllowed(d))
return DICT_OK;
// 条件二: 如果Hash表承载的元素个数超过其当前大小,并且可以进行扩容
if ((dict_can_resize == DICT_RESIZE_ENABLE &&
d->ht[0].used >= d->ht[0].size) ||
// 条件三: 或者Hash表承载的元素个数已是当前大小的5倍
(dict_can_resize != DICT_RESIZE_FORBID &&
d->ht[0].used / d->ht[0].size > dict_force_resize_ratio))
{
return dictExpand(d, d->ht[0].used + 1);
}
return DICT_OK;
}

/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size)
{
// 哈希表的初始大小
unsigned long i = DICT_HT_INITIAL_SIZE;

// 如果要扩容的大小已经超过最大值,则返回最大值加1
if (size >= LONG_MAX) return LONG_MAX + 1LU;
// 扩容大小没有超过最大值
while(1) {
// 如果扩容大小大于等于最大值,就返回截至当前扩到的大小
if (i >= size)
return i;
// 每一步扩容都在现有大小基础上乘以2
i *= 2;
}
}

/* Returns the index of a free slot that can be populated with
* a hash entry for the given 'key'.
* If the key already exists, -1 is returned
* and the optional output parameter may be filled.
*
* Note that if we are in the process of rehashing the hash table, the
* index is always returned in the context of the second (new) hash table. */
static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
{
unsigned long idx, table;
dictEntry *he;
if (existing) *existing = NULL;

/* Expand the hash table if needed */
// 检查是否需要扩展哈希表,不足则扩容
if (_dictExpandIfNeeded(d) == DICT_ERR)
return -1;
for (table = 0; table <= 1; table++) {
// 计算Key的bucket位置
idx = hash & d->ht[table].sizemask;
/* Search if this slot does not already contain the given key */
// 检查节点上是否存在新增的Key
he = d->ht[table].table[idx];
// 在节点链表检查
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key)) {
if (existing) *existing = he;
return -1;
}
he = he->next;
}
// 扫完ht[0]后,如果哈希表不在rehashing,则无需再扫ht[1]
if (!dictIsRehashing(d)) break;
}
return idx;
}
/*
* 清空字典上的所有哈希表节点,并重置字典属性
*
* T = O(N)
*/
void dictEmpty(dict *d, void(callback)(void*)) {
// 删除两个哈希表上的所有节点
// T = O(N)
_dictClear(d,&d->ht[0],callback);
_dictClear(d,&d->ht[1],callback);
// 重置属性
d->rehashidx = -1;
d->pauserehash = 0;
}

void dictSetResizeEnabled(dictResizeEnable enable) {
dict_can_resize = enable;
}

uint64_t dictGetHash(dict *d, const void *key) {
return dictHashKey(d, key);
}

/* Finds the dictEntry reference by using pointer and pre-calculated hash.
* oldkey is a dead pointer and should not be accessed.
* the hash value should be provided using dictGetHash.
* no string / key comparison is performed.
* return value is the reference to the dictEntry if found, or NULL if not found. */
dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
dictEntry *he, **heref;
unsigned long idx, table;

if (dictSize(d) == 0) return NULL; /* dict is empty */
for (table = 0; table <= 1; table++) {
idx = hash & d->ht[table].sizemask;
heref = &d->ht[table].table[idx];
he = *heref;
while(he) {
if (oldptr==he->key)
return heref;
heref = &he->next;
he = *heref;
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}

/* ------------------------------- Debugging ---------------------------------*/

#define DICT_STATS_VECTLEN 50
size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
unsigned long i, slots = 0, chainlen, maxchainlen = 0;
unsigned long totchainlen = 0;
unsigned long clvector[DICT_STATS_VECTLEN];
size_t l = 0;

if (ht->used == 0) {
return snprintf(buf,bufsize,
"Hash table %d stats (%s):\n"
"No stats available for empty dictionaries\n",
tableid, (tableid == 0) ? "main hash table" : "rehashing target");
}

/* Compute stats. */
for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
for (i = 0; i < ht->size; i++) {
dictEntry *he;

if (ht->table[i] == NULL) {
clvector[0]++;
continue;
}
slots++;
/* For each hash entry on this slot... */
chainlen = 0;
he = ht->table[i];
while(he) {
chainlen++;
he = he->next;
}
clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
if (chainlen > maxchainlen) maxchainlen = chainlen;
totchainlen += chainlen;
}

/* Generate human readable stats. */
l += snprintf(buf+l,bufsize-l,
"Hash table %d stats (%s):\n"
" table size: %lu\n"
" number of elements: %lu\n"
" different slots: %lu\n"
" max chain length: %lu\n"
" avg chain length (counted): %.02f\n"
" avg chain length (computed): %.02f\n"
" Chain length distribution:\n",
tableid, (tableid == 0) ? "main hash table" : "rehashing target",
ht->size, ht->used, slots, maxchainlen,
(float)totchainlen/slots, (float)ht->used/slots);

for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
if (clvector[i] == 0) continue;
if (l >= bufsize) break;
l += snprintf(buf+l,bufsize-l,
" %s%ld: %ld (%.02f%%)\n",
(i == DICT_STATS_VECTLEN-1)?">= ":"",
i, clvector[i], ((float)clvector[i]/ht->size)*100);
}

/* Unlike snprintf(), return the number of characters actually written. */
if (bufsize) buf[bufsize-1] = '\0';
return strlen(buf);
}

void dictGetStats(char *buf, size_t bufsize, dict *d) {
size_t l;
char *orig_buf = buf;
size_t orig_bufsize = bufsize;

l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
buf += l;
bufsize -= l;
if (dictIsRehashing(d) && bufsize > 0) {
_dictGetStatsHt(buf,bufsize,&d->ht[1],1);
}
/* Make sure there is a NULL term at the end. */
if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
}

/* ------------------------------- Benchmark ---------------------------------*/

#ifdef REDIS_TEST

uint64_t hashCallback(const void *key) {
return dictGenHashFunction((unsigned char*)key, strlen((char*)key));
}

int compareCallback(void *privdata, const void *key1, const void *key2) {
int l1,l2;
DICT_NOTUSED(privdata);

l1 = strlen((char*)key1);
l2 = strlen((char*)key2);
if (l1 != l2) return 0;
return memcmp(key1, key2, l1) == 0;
}

void freeCallback(void *privdata, void *val) {
DICT_NOTUSED(privdata);

zfree(val);
}

char *stringFromLongLong(long long value) {
char buf[32];
int len;
char *s;

len = sprintf(buf,"%lld",value);
s = zmalloc(len+1);
memcpy(s, buf, len);
s[len] = '\0';
return s;
}

dictType BenchmarkDictType = {
hashCallback,
NULL,
NULL,
compareCallback,
freeCallback,
NULL,
NULL
};

#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) do { \
elapsed = timeInMilliseconds()-start; \
printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while(0)

/* ./redis-server test dict [<count> | --accurate] */
int dictTest(int argc, char **argv, int accurate) {
long j;
long long start, elapsed;
dict *dict = dictCreate(&BenchmarkDictType,NULL);
long count = 0;

if (argc == 4) {
if (accurate) {
count = 5000000;
} else {
count = strtol(argv[3],NULL,10);
}
} else {
count = 5000;
}

start_benchmark();
for (j = 0; j < count; j++) {
int retval = dictAdd(dict,stringFromLongLong(j),(void*)j);
assert(retval == DICT_OK);
}
end_benchmark("Inserting");
assert((long)dictSize(dict) == count);

/* Wait for rehashing. */
while (dictIsRehashing(dict)) {
dictRehashMilliseconds(dict,100);
}

start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict,key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements");

start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
dictEntry *de = dictFind(dict,key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Linear access of existing elements (2nd round)");

start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
dictEntry *de = dictFind(dict,key);
assert(de != NULL);
zfree(key);
}
end_benchmark("Random access of existing elements");

start_benchmark();
for (j = 0; j < count; j++) {
dictEntry *de = dictGetRandomKey(dict);
assert(de != NULL);
}
end_benchmark("Accessing random keys");

start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(rand() % count);
key[0] = 'X';
dictEntry *de = dictFind(dict,key);
assert(de == NULL);
zfree(key);
}
end_benchmark("Accessing missing");

start_benchmark();
for (j = 0; j < count; j++) {
char *key = stringFromLongLong(j);
int retval = dictDelete(dict,key);
assert(retval == DICT_OK);
key[0] += 17; /* Change first number to letter. */
retval = dictAdd(dict,key,(void*)j);
assert(retval == DICT_OK);
}
end_benchmark("Removing and adding");
dictRelease(dict);
return 0;
}
#endif